پیش‌بینی و تحلیل نتایج اشتغال صنعتی در ایران با روش شبکه‌ عصبی مصنوعی(ANN) و مدل ARIMA

نویسندگان

  • احمد جعفری صمیمی
  • زهرا دهقان
چکیده مقاله:

  صنعت یکی از بخش‌‌های مهم و اساسی اقتصاد و زمینه‌ساز رشد و توسعه صنعتی است. رشد و توسعه بخش صنعت، زمینه را برای رشد و توسعه سایر بخش‌‌ها از جمله کشاورزی، خدمات، حمل و نقل و انرژی فراهم می‌سازد. این بخش در فرایند توسعه نقش مهمی در ایجاد اشتغال دارد. با توجه به اهمیت پیش‌بینی در برنامه‌ریزی و سیاست‌های اقتصادی و اهمیت اشتغال در بخش صنعت، مطالعه حاضر به پیش‌بینی میزان اشتغال صنعتی ایران با استفاده از روش شبکه عصبی مصنوعی ANN و ARIMA پرداخته است. بدین منظور از داده‌های 1358-1390 استفاده شده است. برای بررسی دقت پیش‌بینی از ریشه میانگین مربعات خطا RMSE ، میانگین مطلق درصد خطا RMSE و آماره‌ی U تایل استفاده شده است. نتایج تحقیق نشان می‌دهد که، شبکه عصبی پیشرو پس انتشار دارای قدرت بالایی در پیش‌بینی اشتغال صنعتی در ایران می‌باشد و نسبت به روش ARIMA دارای خطای کمتری است.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش بینی و تحلیل نتایج اشتغال صنعتی در ایران با روش شبکه عصبی مصنوعی(ann) و مدل arima

صنعت یکی از بخش های مهم و اساسی اقتصاد و زمینه ساز رشد و توسعه صنعتی است. رشد و توسعه بخش صنعت، زمینه را برای رشد و توسعه سایر بخش ها از جمله کشاورزی، خدمات، حمل و نقل و انرژی فراهم می سازد. این بخش در فرایند توسعه نقش مهمی در ایجاد اشتغال دارد. با توجه به اهمیت پیش بینی در برنامه ریزی و سیاست های اقتصادی و اهمیت اشتغال در بخش صنعت، مطالعه حاضر به پیش بینی میزان اشتغال صنعتی ایران با استفاده از...

متن کامل

پیش بینی تولید آبزیان دریایی در ایران با استفاده از روش ARIMA و شبکه عصبی مصنوعی

پیش­بینی پدیده­های اقتصادی ساختاری فراهم می­کند تا مدیران و مسؤلان اقتصادی را در گرفتن تصمیم‌های درست یاری ­دهد. هدف اصلی این مطالعه پیش­بینی مقدار تولید آبزیان دریایی در ایران است. برای این منظور از روش­های سری زمانی خود توضیح جمعی میانگین متحرک (ARIMA)[1] و شبکه عصبی مصنوعی[2] استفاده می­شود. در این مطالعه سه ساختار گوناگون شبکه عصبی شامل شبکه عصبی پیشرو[3]، تابع پایه شعاعی[4] و المن[5] بکار ...

متن کامل

مقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure

کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...

متن کامل

پیش بینی اشتغال صنعتی درایران با استفاده از شبکه عصبی مصنوعی و arima

صنعت یکی از بخش های مهم و اساسی اقتصاد و زمینه ساز رشد و توسعه اقتصادی است. رشد و توسعه بخش صنعت، زمینه را برای رشد و توسعه سایر بخش ها از جمله کشاورزی، خدمات، حمل و نقل و انرژی فراهم می سازد. این بخش در فرایند توسعه نقش مهمی در ایجاد اشتغال دارد. با توجه به اهمیت پیش بینی در برنامه ریزی و سیاست های اقتصادی و اهمیت اشتغال در بخش صنعت، مطالعه حاضر به پیش بینی میزان اشتغال صنعتی ایران به روش شبکه...

مدلسازی و پیش بینی صادرات آبزیان دریایی در ایران با استفاده از روش ARIMA و شبکه های عصبی مصنوعی

هدف اصلی این مقاله، مدلسازی و پیش بینی میزان صادرات آبزیان دریایی در ایران است. برای این منظور، از روش های سری زمانی خود توضیح جمعی میانگین متحرک(ARIMA) و شبکه عصبی مصنوعی استفاده می شود. به منظور انجام بررسی، از داده های ماهانه دوره 1374:03 تا 1387:12 برای برآورد و آموزش مدل و از داده های دوره از 1388:01 تا 1390:12 به منظور بررسی قدرت پیش بینی مدل های مختلف استفاده می شود. در این مطالعه، معیار...

متن کامل

پیش بینی دامنه تغییرات طلا با استفاده از مدل ترکیبی ARIMA و شبکه عصبی

مدل خودرگرسیو میانگین متحرک انباشته (ARIMA) که تحت عنوان روش باکس و جنکینزشناخته می‌شود، یکی از پرکاربردترین مدل‌ها در پیش‌بینی سری‌های زمانی است. اما پیش­ فرض اصلی این مدل خطی بودن سری­های زمانی می­باشد. از سوی دیگر شبکه­ی عصبی یک تخمین زننده­ی عمومی است که الگو­های غیر خطی را بسیار خوب مدل­سازی می­نماید. دانستن الگوی داده­ها مبنی بر خطی و غیر خطی بودن در واقعیت کمی دشوار است، بنابراین این اید...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 1  شماره 1

صفحات  33- 49

تاریخ انتشار 2014-08-23

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023